Theme III

Next Generation Wireless Sensors in Medical Applications

Theme III combines the interconnected expertise of TAU, OU, and VTT in the field of wireless sensors for medical applications and collaborates with all the other Themes in the Flagship. All the PIs in Theme III are internationally networked and recognized. The research teams have attained a diverse funding base from Academy of Finland, Business Finland and EU.

Demonstrated excellence of the PI’s in Theme III creates excellent innovation environment for FinMedTechNet Flagship. This excellence in the fields of wireless implantable sensors, on-skin sensors, wearable textile-based devices, microfluidic sensors, new materials and body-centric communication technologies enables achieving new wireless sensors for medical applications.

Technological excellence of Theme III is concentrated on achievement of

  • implantable and body-worn flexible and wearable sensors
  • body sensor networks
  • point-of-care hematological assays
  • wearable microfluidic sensors
  • real-time in vivo control technologies for neurodegenerative diseases
  • novel sensing materials of flexible and stretchable components
  • electrochemical and optic surface plasmon resonance biosensors
  • miniaturized implant antennas especially for brain implant communications and wearable textile-based sensors.

Demonstrated clinical excellence includes collaboration and joint research projects between engineering scientist and clinical doctors, which is especially important in bringing the innovations to practical use in healthcare.

Selected references

Chen LY, McConnell MV, Bao Z, et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nature Commun., vol. 5, article no. 5028, Oct. 2014.

Chen P, Saati S, Varma R, Humayun MS, Tai Y. Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. Journal of Microelectromechanical Systems, vol. 19, no. 4, pp. 721-734, Aug. 2010.

Dagdeviren C, Ramadi KB, Langer R. Miniaturized neural system for chronic, local intracerebral drug delivery. Sci. Transl. Med., vol. 10, no. 425, 10 pages, Jan. 2018.

Guner H et al. Sens. Actuators B, v239, pp 571-577. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. https://www.sciencedirect.com/science/article/abs/pii/S092540051631293X

Khan MWA, Sydänheimo L, Ukkonen L, Björninen T. Inductively powered pressure sensing system integrating a far-field data transmitter for monitoring of intracranial pressure. IEEE Sensors J., vol. 17, no. 7, pp. 2191–2197, Apr. 2017, doi: 10.1109/JSEN.2017.2661324.

Lee S, Bristol RE, Preul MC, Chae J. Three dimensionally printed microelectromechanical-system hydrogel valve for communicating hydrocephalus. ACS Sens., vol. 5, no. 5, pp. 1398-1404, Mar. 2020.

Liu C, Zhao Y, Sheng X. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsyst. Nanoeng., vol. 6, no. 64, 12 pages, Aug. 2020.

Liu S, Volakis J, Chae J. Fully pasive flexible wireless neural recorder for the acquisition of neuropotentials from a rat model. ACS Sens., vol. 4, no. 12, pp. 3175-3185, Oct. 2019.

Ma S, Björninen T, Sydänheimo L, Voutilainen M, Ukkonen L. Double split rings as extremely small and tuneable antennas for brain implantable wireless medical microsystems. IEEE Trans. Antennas Propag., 8 pages, Aug. 2020, doi: 10.1109/TAP.2020.3016459

Zaeimbashi M, Lin H, Sun N, et al. NanoNeuroRFID: A wireless implantable device based on magnetoelectric antennas. IEEE J. Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 3, no. 3, pp. 206-215, Sep. 2019.

Zhou A, Santacrux SR, Johnson BC, Alexandrov G, Moin A, Burghardt FL, Rabaey JM, Carmena JM, Muller R. A wireless and artefact-free 128-channel neuromodulation device for closed-loop stumation and recording in non-human primates. Nat. Biomed. Eng., vol. 3, pp. 15-26, Jan. 2019.

Mikkonen R, Puistola P, Jönkkäri I, Mäntysalo M. Inkjet Printable Polydimethylsiloxane for All-Inkjet-Printed Multilayered Soft Electrical Applications. ACS Applied Materials & Interfaces 2020 12 (10), 11990-11997, DOI: 10.1021/acsami.9b19632

Vuorinen T, Niittynen J, Kankkunen T, Kraft TM, Mäntysalo M. Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate. Sci Rep 6, 35289 (2016). https://doi.org/10.1038/srep35289

Vuorinen T, Noponen K, Jeyhani V, Aslam MA, Junttila MJ, Tulppo MP, Kaikkonen KS, Huikuri HV, Seppänen T, Mäntysalo M, Vehkaoja A. (2020) Unobtrusive, Low‐Cost Out‐of‐Hospital, and In‐Hospital Measurement and Monitoring System. Adv. Intell. Syst. doi:10.1002/aisy.202000030

Yang G, Xie L, Mäntysalo M, Zhou X, Pang Z, Xu LD, Kao-Walter S, Chen Q, Zheng L-R. A Health-IoT Platform Based on the Integration of Intelligent Packaging, Unobtrusive Bio-Sensor, and Intelligent Medicine Box. IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2180-2191, Nov. 2014, doi: 10.1109/TII.2014.2307795.

Hakala J, Kilpijärvi J, Särestöniemi M, Hämäläinen M, Myllymäki S, Myllylä T. Microwave sensing of brain water – A simulation and experimental study using human brain models. IEEE Access, Vol. 8, pp. 111303 – 111315, 2020. Print ISSN: 2169-3536, Online ISSN: 2169-3536, DOI: 10.1109/ACCESS.2020.3001867.

Hämäläinen M, Mucchi L, Girod-Genet M, Paso T, Farserotu J, Tanaka H, Anzai D, Pierucci L, Khan R, Alam MM, Dallemagne P. ETSI SmartBAN Architecture: the Global Vision for Smart Body Area Networks. IEEE Access, Vol. 8, pp. 150611 – 150625, 2020, Print ISSN: 2169-3536, Online ISSN: 2169-3536, DOI: 10.1109/ACCESS.2020.3016705.

Mucchi L, Vuohtoniemi R, Virk H, Conti A, Hämäläinen M, Iinatti J, Win M. Spectrum Occupancy and Interference Model based on Network Experimentations in Hospital. IEEE Transactions on Wireless Communications, on page(s): 1-10, Print ISSN: 1536-1276, Online ISSN: 1558-2248, DOI: 10.1109/TWC.2020.2995116.

Särestöniemi M, Pomalaza-Ráez C, Kissi C, Berg M, Hämäläinen M, Iinatti J. WBAN channel characteristics between capsule endoscope and receiving directive UWB on-body antennas. IEEE Access, Print ISSN: 2169-3536, Online ISSN: 2169-3536, DOI: 10.1109/ACCESS.2020.2982247

Boutry CM et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng., vol. 3, no. 1, pp. 47–57, Jan. 2019, doi: 10.1038/s41551-018-0336-5.

Farandos NM, Yetisen AK, Monteiro MJ, Lowe CR, Yun SH. Contact lens sensors in ocular diagnostics. Advanced Healthcare Materials, vol. 4, no. 6. Wiley-VCH Verlag, pp. 792–810, 01-Apr-2015, doi: 10.1002/adhm.201400504.

Kim J, Campbell AS, de Ávila BEF, Wang J. Wearable biosensors for healthcare monitoring. Nature Biotechnology, vol. 37, no. 4. Nature Publishing Group, pp. 389–406, 01-Apr-2019, doi: 10.1038/s41587-019-0045-y.

Koh A et al. A soft, wearable microfluidic device for the capture, storage, and colorimetricsensing of sweat. Sci. Transl. Med., vol. 8, no. 366, pp. 366ra165-366ra165, Nov. 2016, doi: 10.1126/scitranslmed.aaf2593.

Mickle AD, Won SM, Rogers JA. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature, vol. 565, pp. 361–365, Jan. 2019.

Shao H et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun., vol. 6, no. 1, pp. 1–9, May 2015, doi: 10.1038/ncomms7999.

© FinMedTechNet 2020. All rights reserved.